Darmowa dostawa od 999,00 zł
Praktyczne uczenie nienadzorowane przy użyciu języ

Praktyczne uczenie nienadzorowane przy użyciu języ

59,60 zł
brutto / szt.
Najniższa cena z 30 dni: / szt.
Cena regularna: / szt.
Cena katalogowa:79,80 zł
  • Producent: APN PROMISE
  • Kod produktu: 9788375414264
14 dni na łatwy zwrot
Bezpieczne zakupy
Kliknij, aby dodać produkt do listy zakupowejDodano produkt do listy zakupowejDodaj do listy zakupowej
Jak budować użytkowe rozwiązania uczenia maszynowego na podstawie nieoznakowanych danych.
Wielu ekspertów branżowych uważa uczenie nienadzorowane za kolejną granicę w dziedzinie sztucznej inteligencji, która może stanowić klucz do pełnej sztucznej inteligencji. Ponieważ większość danych na świecie jest nieoznakowana, nie można do nich zastosować konwencjonalnego uczenia nadzorowanego. Z kolei uczenie nienadzorowane może być stosowane wobec nieoznakowanych zbiorów danych w celu odkrycia istotnych wzorców ukrytych głęboko w tych danych, które dla człowieka mogą być niemal niemożliwe do odkrycia.
Autor Ankur Patel pokazuje, jak stosować uczenie nienadzorowane przy wykorzystaniu dwóch prostych platform dla języka Python: Scikit-learn oraz TensorFlow (wraz z Keras). Dzięki dołączonemu kodowi i praktycznym przykładom analitycy danych będą mogli identyfikować trudne do znalezienia wzorce w danych i odkrywać dogłębne zależności biznesowe, wykrywać anomalie, przeprowadzać automatyczną selekcję zmiennych i generować syntetyczne zbiory danych. Wystarczy znajomość programowania i nieco doświadczenia w uczeniu maszynowym, aby zająć się:
Porównywaniem mocnych i słabych stron różnych podejść do uczenia maszynowego: uczenia nadzorowanego, nienadzorowanego i wzmacnianego.
Przygotowywaniem i zarządzaniem projektami uczenia maszynowego.
Budowaniem systemu wykrywania anomalii w celu wychwycenia oszustwa dotyczącego kard kredytowych.
Rozdzielaniem użytkowników na wydzielone i jednorodne grupy.
Przeprowadzaniem uczenia pół-nadzorowanego.
Opracowywaniem systemów polecania filmów z użyciem ograniczonych automatów Boltzmanna.
Generowaniem syntetycznych obrazów przy użyciu generujących sieci antagonistycznych.
Badacze, inżynierowie i studenci docenią tę książkę pełną praktycznych technik uczenia nienadzorowanego, napisaną prostym językiem z nieskomplikowanymi przykładami w języku Python, które można szybko i skutecznie implementować.
Sarah Nagy
Główny analityk danych w firmie Edison
Ankur A. Patel jest wiceprezesem ds. informatyki analitycznej w firmie 7Park Data, wspieranej przez firmę inwestycyjną Vista Equity Partners. W firmie 7Park Data, Ankur i jego zespół analizy danych wykorzystują dane alternatywne do opracowywania produktów związanych z danymi dla funduszy hedgingowych i korporacji oraz rozwijają usługi uczenia maszynowego dla klientów firmowych.
Symbol
9788375414264
Autor
Ankur A. Patel
Wydawnictwo
APN PROMISE
Ilość stron
362
Format
17x23 cm
Oprawa
broszurowa
Data premiery
2020-07-13
Napisz swoją opinię
Twoja ocena:
5/5
Dodaj własne zdjęcie produktu:
Potrzebujesz pomocy? Masz pytania?Zadaj pytanie a my odpowiemy niezwłocznie, najciekawsze pytania i odpowiedzi publikując dla innych.
Zapytaj o produkt
Jeżeli powyższy opis jest dla Ciebie niewystarczający, prześlij nam swoje pytanie odnośnie tego produktu. Postaramy się odpowiedzieć tak szybko jak tylko będzie to możliwe. Dane są przetwarzane zgodnie z polityką prywatności. Przesyłając je, akceptujesz jej postanowienia.
pixel